A Unifying View of Multiple Kernel Learning
نویسندگان
چکیده
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion’s dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.
منابع مشابه
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint Multiple Kernel Learning: A Unifying Probabilistic Viewpoint
We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classi cation that is lower bound of the marginal likelihood and contains many regularised risk approaches as special ...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملA unifying framework for vector-valued manifold regularization and multi-view learning
This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) formulation for the problem of learning an unknown functional dependency between a structured input space and a structured output space, in the Semi-Supervised Learning setting. Our formulation includes as special cases Vector-valued Manifold Regularization and Multi-view Learning, thus provides in particular a...
متن کاملUnifying Framework for Fast Learning Rate of Non-Sparse Multiple Kernel Learning
In this paper, we give a new generalization error bound of Multiple Kernel Learning (MKL) for a general class of regularizations. Our main target in this paper is dense type regularizations including lp-MKL that imposes lp-mixed-norm regularization instead of l1-mixed-norm regularization. According to the recent numerical experiments, the sparse regularization does not necessarily show a good p...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کامل